72 research outputs found

    History of flooding at Colorado State University (1902, 1938, 1951, 1992 and 1997)

    Get PDF
    Final report to Colorado State University.Report number Geotech 1998-100.September 1998.Newspaper reports, photos, rainfall, and damage estimates are presented for the floods of 1902, 1938, 1951 and 1997 which impacted the campus of what is now know as Colorado State University. The September 20 and 21, 1902 flood caused no reported damage to the campus probably because the few buildings built west of the railway track were on high ground. The September 2 and 3, 1938 flood caused flood damage to the Library, Heating Plant, College Avenue Gym/Field House, Physics Building, Museum, steam tunnels, Johnson Hall (Student Union) and flooding of the oval and Tennis Courts. Over 10,000(1938dollars)offlooddamagetothemuseumalonewasreported.TheAugust3,1951floodcausedflooddamagetotheLibrary,HeatingPlant,CollegeAvenueGym/FieldHouse,ElectricalEngineering(formallytheMuseum),Physics,steamtunnels,JohnsonHall(StudentUnion),OldBraidenHallKitchenandfloodingoftheOvalandTennisCourts.The1951campusfloodresultedin10,000 (1938 dollars) of flood damage to the museum alone was reported. The August 3, 1951 flood caused flood damage to the Library, Heating Plant, College Avenue Gym/Field House, Electrical Engineering (formally the Museum), Physics, steam tunnels, Johnson Hall (Student Union), Old Braiden Hall Kitchen and flooding of the Oval and Tennis Courts. The 1951 campus flood resulted in 270,000 (1951 dollars) of flood damage to the campus. The June 24, 1992 flood caused some flood damage to Forestry, Heating Plant and the Administration Annex. The 1992 campus flooding resulted in 75,000(1992dollars)offlooddamageoncampus.TheJuly28,1997floodcausedmajorflooddamagetotheHeatingPlant,CollegeAvenueGym/FieldHouse,Gibbons(formerlytheMuseumandtheElectricalEngineeringBuilding),OccupationalTherapy(formerlythePhysicsBuilding),steamtunnels,JohnsonHall,AdministrationAnnex,MorganLibrary,Lorystudentcenter,Engineering,Education,Eddy,InternationalHouse,UniversityHealthServices,OldDogColonyandfloodingoftheOval,Tenniscourts/parkinglotnorthofEngineering.The1997floodresultedin75,000 (1992 dollars) of flood damage on campus. The July 28, 1997 flood caused major flood damage to the Heating Plant, College Avenue Gym/Field House, Gibbons (formerly the Museum and the Electrical Engineering Building), Occupational Therapy (formerly the Physics Building), steam tunnels, Johnson Hall, Administration Annex, Morgan Library, Lory student center, Engineering, Education, Eddy, International House, University Health Services, Old Dog Colony and flooding of the Oval, Tennis courts/parking lot north of Engineering. The 1997 flood resulted in 100 million (1997 dollars) of flood damage to the campus. Several campus buildings and areas have flooded several times. The old Library (Music), Heating Plant, College Avenue Gym/Field House, Gibbons (old Museum and Electrical Engineering), Occupational Therapy (formerly Physics) and Johnson Hall (old student Union) flooded in the 1938, 1951 and 1997 floods. These six buildings were constructed after the 1902 flood. Morgan Library, Lory Student Center, Engineering, Education, Eddy, International House, University Health Services and the Old Dog Colony were constructed after the 1951 flood

    Biomass Production of Herbaceous Energy Crops in the United States: Field Trial Results and Yield Potential Maps from the Multiyear Regional Feedstock Partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small‐scale and short‐term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long‐term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field‐scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm‐scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM‐ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability.MethodsWe did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367.FindingsBetween Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications.InterpretationSurgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Laboratory study of compressional liquefaction

    No full text
    A new experimental apparatus has been developed to investigate the transient and long-term pore-water pressure response of saturated soils subject to compressional stress-wave loading. The laboratory apparatus is capable of generating compressive shock pulses on the order of 35,000 kPa having submillisecond rise times to peak stress. The experimental investigation was conducted to examine and establish an understanding of compressionally induced liquefaction in saturated soils. Specimens of water-saturated Monterey No. 0/30 sand were tested at various relative densities and effective stresses. Boundary conditions were for one-dimensional, confined compressive loadings without drainage. Results indicate that it is possible to liquefy Monterey No. 0/30 sand under these conditions. Significant residual pore-water pressure increases were observed even at high relative densities and high effective stresses. The data suggest that a transient strain exceeding approximately 0.005% may result in explosively induced residual pore-water pressure increases. Several empirical models are presented for estimating liquefaction potential as a function of initial relative density, initial effective stress, and the magnitude of the applied compressive strain. © ASCE
    corecore